Histological evaluation of bone formation adjacent to dental implants with a novel apical chamber design

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Clinical Implant Dentistry and Related Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>Draft</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Meireles, Luiz; Eastman Institute for Oral health, Prosthodontics Branemark, Per-Ingvar; Branemark Osseointegration Center Johansson, Carina; Faculty of Odontology, Prosthetic dentistry/Dental Material Science Albrektsson, Tomas; Gothenburg University, Biomaterials</td>
</tr>
<tr>
<td>Keywords:</td>
<td>osseointegration, dental implants, bone formation, wound healing, apical chamber</td>
</tr>
</tbody>
</table>
Histological evaluation of bone formation adjacent to dental implants with a novel apical chamber design

Luiz Meirelles PhD#, PI-Branemark PhD*, Carina Johansson PhD©, Tomas Albrektsson PhD+

#Eastman Institute for Oral Health, University of Rochester, Rochester NY
*Brånemark Osseointegration Center, Göteborg, Sweden
© Department of Prosthodontics/Dental Material Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
+ Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Corresponding Author:

Luiz Meirelles
Eastman Institute for Oral Health
University of Rochester
625 Elmwood Av,
14620 Rochester NY
T 585 2765576
F 585 2448772
luiz_meirelles@urmc.rochester.edu
ABSTRACT

Purpose: Wound healing events after implant placement will vary according to the extent of the necrotic zone. The goal of the present study was to evaluate bone healing around titanium implants with a novel apical chamber design. Materials and Methods: Titanium implants grade-IV were turned with different apex design. Control implants had a self tapping design with centric cutting grooves. Test implants exhibited eccentric cutting grooves interconnected by a hollow chamber. Implants were installed in the rabbit femur/tibia for histological analysis. Results: After 1 week, immature bone formation started at the cortical level of the test implants associated to scalloped contours indicative of bone resorption. Control implants failed to show new bone formation and the space within the threads was filled mainly by red blood cells and surgical debris. The hollow chamber of the test implants demonstrated bone shaves after 1 week that were remodeled after 4 weeks. Bone contact values showed no difference after 1 week and significant higher values for test implants after 4 weeks compared to control implants. Conclusion: This experimental study verifies the beneficial effect of bone formation in the chamber at the apical part of the fixture coupled to a faster bone healing at the bone-implant interface.

Keywords: osseointegration, dental implants, bone formation, wound healing
Introduction

The success of dental implant rehabilitation is dictated by the integrity of bone-implant interface. Wound healing events that take place after implant installation follows a series of biological reactions related to numerous factors and the surgical technique plays an important role. Minimally traumatizing surgical technique was originally reported to induce soft and hard tissue regeneration around implants placed in dogs. Higher pressure applied during drilling in combination with reduced irrigation was considered a traumatic technique, leading to mobility of the fixture, which was surrounded by a collagen rich connective tissue capsule associated to soft tissue hyperplasia. Traumatic surgery techniques will increase the temperature that may induce permanent bone tissue injury. A temperature higher than the threshold level of 47°C applied for 5 min and 50°C applied for 1 min will result in significant change in the healing process that may ultimately not occur depending on the temperature and exposure time.

Inadequate drill design or too high drilling speed and pressure applied may result in values close or above the 47°C limit based on in vitro experiments. Few reports indicate the relevance of the extent of necrotic bone related to the increased temperature during the drilling step. In a study performed in rabbits, a necrotic zone of 200- and 500 µm was observed by histological and histochemical observations, respectively. A necrotic zone of 50-100 µm was found in the outer margin of the drilled hole after three weeks in the rabbit tibia where surgery followed the strict minimally traumatizing guidelines. In the same study by Lundskog, increasing temperatures of 60°C, 75°C and 80°C resulted in a necrotic zone of 0.1, 0.9 and 1.1 mm, respectively, as measured by the absence of diaphorase enzyme activity. The necrotic zone can extent up to 1 mm despite a careful surgical protocol and
the new bone formation will start from the periosteal and endosteal surfaces, not directly affected by the site preparation13. The endosteal and periosteal callus formation will reach the implant surface early as two weeks. At the interface, removal and replacement (remodeling) of the nonvital bone will occur between 2-6 weeks 13. The lack of new bone formation at the interface has also been reported at fractured bones and identical sequence of events were observed, explained by the disruption of blood supply at the interface and rapidly extraosseous blood supply formed by the periosteum and endosteum11.

The removal of the nonvital bone present at the bone-implant interface may represent an alternative to improve bone formation by reducing or minimizing the period of resorption leading to earlier bone deposition. The goal is to minimize the necrotic zone and at the same time reduce the overall inflammatory response that will occur prior to the deposition of new bone extracellular matrix, without compromising the implant primary stability.

In the present study, a new apical chamber was tested in the rabbit tibia and femur after 1 and 4 weeks of healing. The aim was to compare the bone tissue healing around (a) conventional self-tapping implant and (b) self-tapping implant with an apical chamber, with emphasis at the bone-implant interface and inside the apical chamber bone tissue healing.

Materials & Methods

Implants
Threaded implants were turned from c.p. Grade IV titanium rods (ASTM F67) with an external diameter of 3.75mm and a total length of 7.5mm (P-I Brånemark Philosophy,
Sao Paulo, Brazil). Control and test implants were identical on the coronal and middle third of the implant. The only difference between the groups was the design on the apical third of the implants. Control implants had a self tapping apical design with centric cutting grooves aligned to the implant body. Test implants exhibited three eccentric cutting grooves interconnected by a hollow chamber (Fig. 1).

Animals and Surgical Technique

A total of 10 New Zealand White rabbits were used in the experiment. This study was approved by the local Ethical Committee of Huddinge University Hospital, Karolinska Institute, Sweden. The animals were adult (9 months of age) and weighted between 4 and 5 kg. The rabbits received one implant in each distal femoral metaphysis and two in each proximal tibial metaphysis. The animals were kept in separate cages during the whole experiment. They had free access to tap water and standard diet. At surgery, general anaesthesia was induced by intramuscular injections of fentanyl 0.3 mg/ml and fluanisone 10 mg/ml (Hypnorm Vet, Janssen Pharmaceutica, Beerse, Belgium) at an initial dose of 0.5 ml per kg body weight and intraperitoneal injections of diazepam (Stesolid Novum, Dumex Alpharma, Denmark) at a dose of 2.5 mg per animal. Additional doses of Hypnorm at a dose of 0.1 ml per kg body weight were given every 30 min during the surgical procedure. The hind legs were shaved and cleaned with clorhexidin. Local anaesthetic lidocain (Xylocain, Astra Zeneca, Sweden) at a dose of 1 ml was injected into each insertion site. The skin and fascial layers were opened and closed separately. The fascial layers were sutured with resorbable sutures. The implantation holes were drilled with a low rotary speed and profuse saline cooling was used. The animals were allowed
to bear their full body weight immediately after surgery. A total of 40 implants were placed in the tibia resulting in 10 implants/group/timepoint. A total of 20 implants were placed in the femur resulting in 5 implants/group/timepoint.

Bone Response

The animals were sacrificed after 1 and 4 weeks with Pentobarbital Vet (Apoteket AB, Stockholm, Sweden) after sedation with 1.0 ml Hypnorm Vet. The implants and their surrounding tissues were removed *en bloc* and immersed in 4% neutral buffered formaldehyde. The specimens were dehydrated in graded series of ethanol and embedded in light curing resin (Technovit 7200 VLC, Kültzer & Co, Germany). Undecalcified sections were ground to a thickness of about two cell layers, 20 µm, and stained with toluidine blue and 1% pyrogin-G. Examinations were performed with a Nikon 80i microscope (Nikon Instruments, USA) equipped with a image software analysis (NIS-Elements BR 3.2, Nikon, USA) using 1X to 100X objectives for descriptive evaluation and morphometrical measurements. The qualitative analysis aimed at describing the early bone formation events at the control and test implants. The histomorphometrical evaluations comprised measurements of the degree of bone-implant contact and bone area limited by the first and third coronal thread at a distance of approximately 600 µm from the thread valleys.

Statistical Analysis

The Wilcoxon sign test was used for statistical analysis of bone contact and bone area values at the interface of the paired implants at different intervals (1 and 4 weeks). Bone
area values inside the chamber were analyzed with Mann-Whitney test. Difference was considered significant at $p \leq 0.05$. Statistical evaluation was performed only on the implants placed in the tibia. Femur implants values are reported but no statistical analysis was performed due to the small number of samples.

Results

Histological evaluation

The implant site in the femur consisted mainly of trabecular bone whereas tibial sites were characterized by a cortical layer of 1.5 mm in height. The original bone trabeculae in the femur were in contact with the top 5 threads and the cortical layer in the tibia was in contact to the 2-3 top threads. The apical part of test and control implants in the tibia (aprox. 2.5 mm) was inside the bone marrow cavity. The apical chamber from the test implants was cut in different orientations during the histological sectioning and both the cutting grooves and the gap between the cutting grooves (corresponding to the entrance of the chamber) could be observed.

1 week

Light microscopy of 1 week specimens demonstrated signs indicative of early bone resorption on the cut bone surface of test implants. Osteoclasts could not be detected but the shallow scalloped contour suggests active bone resorption. Immature woven bone formation started within the thread region of the test implants at the cortical level, apparently not connected to the bone or implant. At the control implants, bone surface did not reveal clear signs of bone resorption and the space within the threads was filled by clot with red blood cells undergoing disintegration and surgical debris (Figs 2 and 3).

Both implants showed typical endosteum reaction leading to new bone downgrowth from
the 3rd to 4th thread and no difference on the tissue development stage could be detected between the groups at this region (Fig 3). After 1 week of healing, intense new bone formation was observed inside the test implant chamber. The new bone formation was observed on the perimeter of the pre-existing bone shaves, interconnecting the different pieces through osteoid seams surrounded by osteoblasts. (Fig. 4).

4 weeks
At 4 weeks, the newly formed mineralized tissue contains osteocytes and osteoblastic seams indicating continuous mineralization of the tissue. At this stage, bone healing was characterized by the appearance of vascular units inside the threads. The newly formed bone was apparently more mature at the test implants with centric osteocytes positioned in the lamellae around the canal. Less organized tissue was found at the control implants, where bone was at the final stages of mineralization and there was no evident sign of lamellar bone (Fig 5). Inside the chamber of the test group, bone shaves were remodeled and new bone formation was present in similar amount compared to 1 week (Fig 4). Only few larger original bone shaves could be found inside the chamber. In some sections, the new bone formation inside the chamber was found to be connected to the original trabecula in the femur and to the lower cortical in the tibia (Fig 6).

Histomorphometrical Analysis
Histomorphometrical analyses showed higher bone contact values for test implants compared to control implants after 4 weeks, whereas no difference was found at 1 week (Fig 7). The analysis of the implants placed in the tibia revealed higher values for all test implants placed both in the proximal and distal metaphysis, except the paired implants
placed in the proximal methaphysis of the tibia in rabbits number 2, 5 and 9 (Fig 8). Bone area values were similar for test and control implants at 1 and 4 weeks (Fig. 9). Similar bone area values of 8.7 ± 4.7 and 10.3 ± 5.7 were calculated inside the chamber after 1 and 4 weeks of healing, respectively.

Discussion
The findings from the present study indicate a novel approach to improve bone healing around titanium implants. The presence of an apical hallow chamber with eccentric cutting grooves apparently minimized the effect of trauma from surgery, resulting in improved wound healing as observed by the bone development stage and and bone-implant contact values. After 1 week of healing, initial solitary woven bone formation (early mineralization) was observed inside the threads of test implants at the cortical level. Control implants failed to show any signs of early mineralization and the threads were mainly filled by coagulum at the same interval. After 4 weeks, the presence of osteons surrounded by lamellar structures with centric osteocytes indicate a faster organization of bone tissue at the implants with the hallow chamber. Control implants showed similar bone area, with less organized tissue and reduced bone-implant contact values. The observations of the current experiment were in agreement with the results reported by Sennerby et al. (1993)\(^4\). The authors reported that no signs of bone resorption or formation were observed at the cortical passage after 1 week of healing, similar to the present findings at the control implants. Early bone formation after 1 week of healing was mainly observed at the endosteum area, again in agreement with the present results observed at the control implants. However, in the present study, early
mineralization was observed at the test implants at the cut bone surface already after 1 week, not reported by Sennerby and coauthors.

The surgical protocol was identical for both test and control implants. In addition, the implant design is identical on the 1st and 2nd third and the only obvious difference is the presence of the hallow chamber and the eccentric cutting edges in the apex. Furthermore, the surface properties of both groups were identical, since the implants were turned from titanium rods of identical specification. Thus, the only variable that could explain the enhanced bone formation at the test implants is the different macrogeometry of the apex. The presence of the chamber could affect bone contact as a result of the design and no effect could be related to the wound healing process. This hypothesis is not supported by the histomorphometrical results after 1 week of healing, where similar bone contact and bone area values were observed. Such results clearly indicate that the improved bone formation is explained by biological events that take place at the interface of the chamber implant. Similar bone formation starting from the endosteum was observed between the two implant groups at the 1 and 4 weeks interval. Bone downgrowth started early after 1 week and continued until 4 weeks with similar appearance and volume. The lack of differences found in this region is explained by the identical (a) surgical protocol and (b) surface properties of the implants. Bone downgrowth from the endosteum is caused by the disruption of blood vessels11, 13 and can also be affected by the surface properties of the implants3, 17.
The current findings revealed early mineralization on the cortical passage of the rabbit tibia already after 1 week of implant installation. At this time point, new bone formation is expected in the threads below the cortical layer (inside the bone marrow, as a result of the endosteum bleeding) or adjacent to non-compact bone. The slower wound healing activity observed adjacent to compact bones may be related to the extension of the non-vital zone (indicative of tissue trauma). This non-vital zone formed after the surgical procedure has been reported by different authors and described as an area with empty osteocyte lacunae or osteocytes exhibiting altered morphology. Histological observations of the wound healing events on trabecular bone of rats (maxilla) showed a 100 µm zone of affected osteocytes\(^8,9,15\). However, when the implants were placed in cortical bone of rats, the zone of altered osteocytes extended up to 400 µm\(^12\). Bone remodeling activity seems to vary according to the width of the affected region. Trabecular bone resorption started at 3 days while bone formation started after 5 days\(^8,9,15\). Cortical bone resorption was observed only in some specimens after 7 days and bone formation was observed after 14 days\(^12\), indicating a delayed remodeling activity in the cortical bone compared to trabecular bone. The findings reported by Otshu et al. (1997) in cortical bone of rats\(^12\) were similar to the results obtained in rabbit cortical bone\(^16\). A region of 200 to 400 µm of altered osteocytes could be detected and bone resorption started after 7 days and bone deposition after 14 days\(^16\). Despite the many differences between the two models used\(^12,16\), the presence of a similar extent of altered osteocytes was related to similar remodeling events on the cortical bone of rats and rabbits. The extent of the non-vital zone was not evaluated in the present non-decalcified sections and may be a possible explanation for the enhanced bone formation to the test implants. Future studies should investigate the extent
of the non-vital zone associated to implants with hallow chambers on decalcified sections.

The bone shaves collected during implant placement were rapidly remodeled and only few large shaves were detected after 4 weeks. In some sections, the new bone formation taking place inside the hollow chamber was interconnected to the surrounding pre-existing bone. Such findings are of great clinical interest if such results could be reproduced in patients. The “autograft” trapped inside the chamber would trigger new bone formation to the implant apex, resulting in increased bone contact without any pre-grafting procedure. Future clinical trials should address this alternative, specially the implants placed in the posterior maxilla (partially inside the sinus).

In conclusion, this experimental study verifies the beneficial effect of bone formation in the chamber at the apical part of the fixture coupled to higher bone contact values at the bone-implant interface.
References

Acknowledgments

The authors would like to thank Carlos Salles Lambert for the SEM analysis. This project was supported by a research program grant from the P-I Branemark Philosophy Company, Bauru, Brazil.
Figure 1. SEM micrograph of the control and test implants. The difference between the groups is the presence of an apical hollow chamber with eccentric cutting edges on the apical part of the test implant.

Figure 2. Control (a) and test (b) implants after 1 week of healing (20x). Bone cut surface is intact on the control implant with no signs of bone resorption or deposition. Space between the thread and the bone surface is filled by few red blood and inflammatory cells (a). Bone surface adjacent to test implants show signs indicative of bone resorption and early mineralization already started (b).

Figure 3. Control (a) and test (b) implants after 1 week of healing. Similar endosteum bone downgrowth was observed in both implants. Red blood cells and surgical debris is found on the control implants at the cortical level (a). Drilling edge can be observed associated to immature bone formation within the threads of the test implants (b).

Figure 4. Bone shaves inside the chamber at 1 (a) and 4 (b) weeks interval. Signs of bone resorption associated to new bone formation were found around the bone shaves after 1 week. After 4 weeks, bone shaves were remodeled and newly formed bone was present inside the chamber.

Figure 5. Higher bone formation was observed inside the threads of test implants (a) compared to control (b). The new bone formation along the interface occurred from an
area with signs of resorption. (a) Bone tissue around control implants reveals structures compatible to early lamellar structures where osteocytes are not centric organized. (b) Bone formation was apparently more mature on the test implants, where lamellar structures surrounded by centric osteocytes can be observed.

Figure 6. New bone formation inside the chamber was connected to the lower cortical of the tibia (a) and to the trabecula on the femur (b). Bone shaves were remodeled and only few larger structures could be found after 4 weeks.

Figure 7. Test implant showed similar bone contact values after 1 week and increased values after 4 weeks compared to control implants

Figure 8. Paired evaluation of the implants placed in the tibia. The majority of the test implants showed higher bone contact values compared to control implants. Lower values were found limited implants placed in the proximal tibial metaphysis of rabbits number 2, 5 and 9.

Figure 9. Similar bone area values were calculated for both implant groups after 1 and 4 weeks of healing.
SEM micrograph of the control and test implants. The difference between the groups is the presence of an apical hollow chamber with eccentric cutting edges on the apical part of the test implant.

150x112mm (300 x 300 DPI)
Control (a) and test (b) implants after 1 week of healing (20x). Bone cut surface is intact on the control implant with no signs of bone resorption or deposition. Space between the thread and the bone surface is filled by few red blood and inflammatory cells. Bone surface adjacent to test implants show signs indicative of bone resorption and early mineralization already started.
Figure 3. Control (a) and test (b) implants after 1 week of healing. Similar endosteum bone downgrowth was observed in both implants. Red blood cells and surgical debris is found on the control implants at the cortical level (a). Drilling edge can be observed associated to immature bone formation within the threads of the test implants (b).

150x187mm (300 x 300 DPI)
Bone shaves inside the chamber at 1 (a) and 4 (b) weeks interval. Signs of bone resorption associated to new bone formation were found around the bone shaves after 1 week. After 4 weeks, bone shaves were remodeled and newly formed bone was present inside the chamber.

150x119mm (300 x 300 DPI)
Higher bone formation was observed inside the threads of test implants (b) compared to control (a). The new bone formation along the interface occurred from an area with signs of resorption. Bone tissue around control implants (a) reveals structures compatible to early lamellar structures where osteocytes are not centric organized. Bone formation was apparently more mature on the test implants (b), where lamellar structures surrounded by centric osteocytes can be observed.

150x119mm (300 x 300 DPI)
New bone formation inside the chamber was connected to the lower cortical of the tibia (a) and to the trabecula on the femur (b). Bone shaves were remodeled and only few larger structures could be found after 4 weeks.

150x187mm (300 x 300 DPI)
Test implant showed similar bone contact values after 1 week and increased values after 4 weeks compared to control implants.

150x93mm (300 x 300 DPI)
Paired evaluation of the implants placed in the tibia. The majority of the test implants showed higher bone contact values compared to control implants. Lower values were found limited implants placed in the proximal tibial metaphysis of rabbits number 2, 5 and 9.

150x97mm (300 x 300 DPI)
Similar bone area values were calculated for both implant groups after 1 and 4 weeks of healing.

150x89mm (300 x 300 DPI)